Enhancing drug accumulation in Saccharomyces cerevisiae by repression of pleiotropic drug resistance genes with chimeric transcription repressors.

نویسندگان

  • Alexander Stepanov
  • Karin C Nitiss
  • Geoffrey Neale
  • John L Nitiss
چکیده

Yeast is a powerful model system for studying the action of small-molecule therapeutics. An important limitation has been low efficacy of many small molecules in yeast due to limited intracellular accumulation. We used the DNA binding domain of the pleiotropic drug resistance regulator pleiotropic drug resistance 1 (Pdr1) fused in-frame to transcription repressors to repress Pdr1-regulated genes. Expression of these chimeric regulators conferred dominant enhancement of sensitivity to a different class of compounds and led to greatly diminished levels of Pdr1p-regulated transcripts, including the yeast p-glycoprotein homolog Pdr5. Enhanced sensitivity was seen for a wide range of small molecules. Biochemical measurements demonstrated enhanced accumulation of rhodamine in yeast cells expressing the chimeric repressors. These repressors of Pdr1p-regulated transcripts can be introduced into large collections of strains such as the Saccharomyces cerevisiae deletion set and enhance the utility of yeast for studying drug action and for mechanism-based drug discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.

We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a hig...

متن کامل

Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae.

Multiple or pleiotropic drug resistance in the yeast Saccharomyces cerevisiae requires the expression of several ATP binding cassette transporter-encoding genes under the control of the zinc finger-containing transcription factor Pdrlp. The ATP binding cassette transporter-encoding genes regulated by Pdrlp include PDR5 and YOR1, which are required for normal cycloheximide and oligomycin toleran...

متن کامل

Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae responds to environmental stress by rapidly altering the expression of large sets of genes. We report evidence that the transcriptional repressors Nrg1 and Nrg2 (Nrg1/Nrg2), which were previously implicated in glucose repression, regulate a set of stress-responsive genes. Genome-wide expression analysis identified 150 genes that were upregulated in nrg1Delta n...

متن کامل

Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae

BACKGROUND Biologically produced alkanes can be used as 'drop in' to existing transportation infrastructure as alkanes are important components of gasoline and jet fuels. Despite the reported microbial production of alkanes, the toxicity of alkanes to microbial hosts could pose a bottleneck for high productivity. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 74 2  شماره 

صفحات  -

تاریخ انتشار 2008